GSFC: Technical Lessons Learned in Trans-Pacific Demonstration (TPD)

Paul Lang/Signal Corp
Paul.A.Lang.1@gsfc.nasa.gov
and
Kevin Kranacs
Kevin.M.Kranacs.1@gsfc.nasa.gov
and
J. Patrick Gary
Pat.Gary@gsfc.nasa.gov

Earth and Space Data Computing Division/Code 930 NASA Goddard Space Flight Center

Information for JUSTSAP 2000's Satellite Communications Workshop November 14-16, 2000

Rational For Mentat SkyX Gateway

- Visible Human Slice Server (VHSS)
 - » Developed on an Apple Macintosh G3 with MacOS X
 - Unable to increase TCP window size beyond 64KB on MacOS X
 - » Uses TCP sockets to transfer data
- Early test over 45 Mbps ATM path with simulated two geosynchronous satelite links using 64KB TCP window

```
Path
         Via
                                         #Hopws
                                                  ftp (Mbps)
                                                                     nttcp (Mbps)
                     SkyX
                            RTT (ms)
                     Proc
                            65B/1500B
                                         -><-
                                                  15KB/32KB
                                                                      7MB
                            1171/1172
                                         2/2
                                                   .027/.155
ARC-NLM Simulated NO
                                                                      0.203
```

TCP window formula predicts 5.855 MB window is needed

```
TCP window = ((bandwidth in Mb/s) * RTT) / (8 bits/byte)
= 45 * 1.172 / 8 = 5.855 MBytes
```

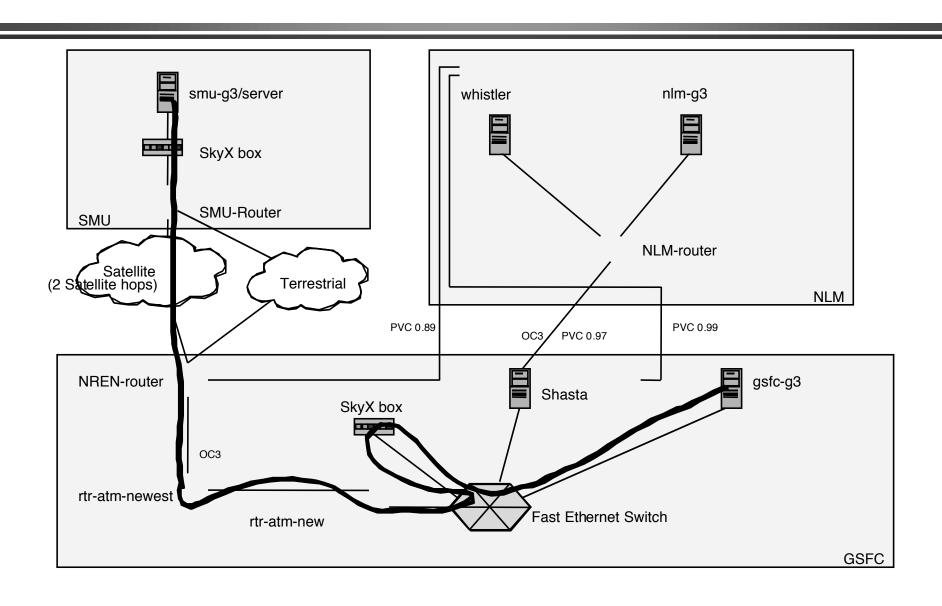
Rational For Mentat SkyX Gateway (continued)

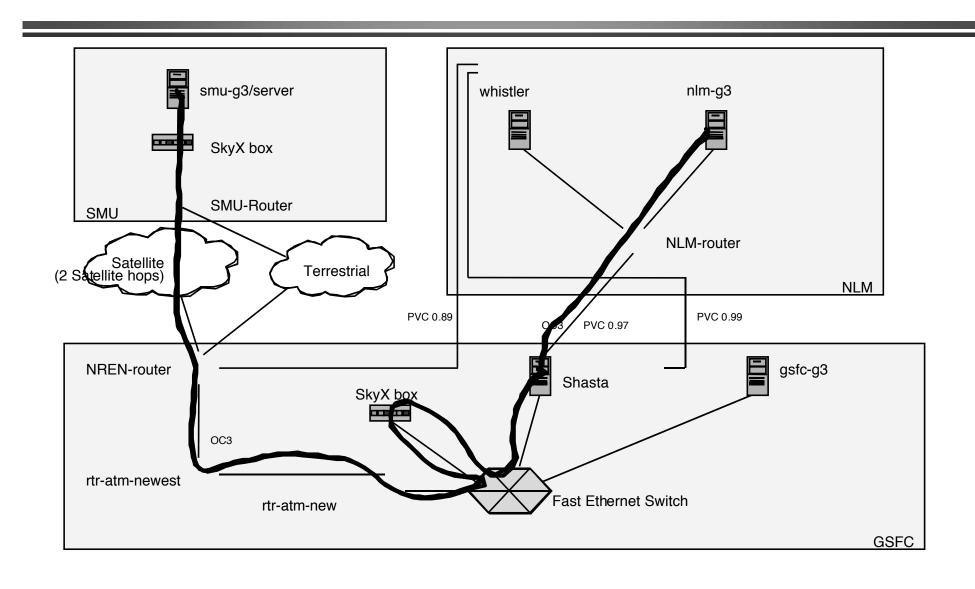
- SkyX Gateway system between SkyX Gateways replaces TCP with a protocol optimized for the long latency, high loss, asymmetric bandwidth conditions typical of satellite communications
- SkyX Gateway solution is transparent to the end users
 - » Does not require modifications to end clients and servers
- SkyX Gateway solution is transparent to IP networks
 - » SkyX protocol encapsulated inside IP packet

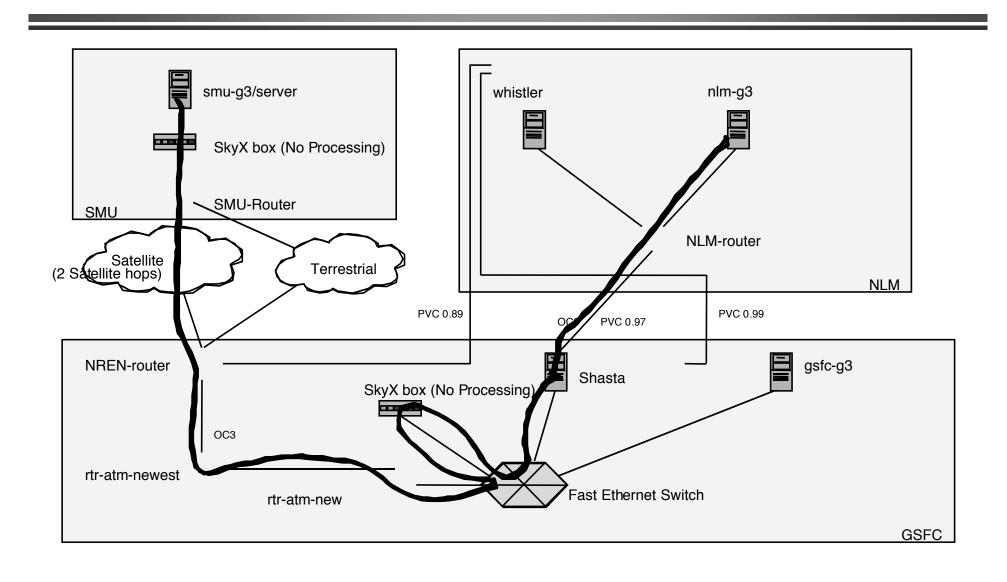
SkyX Related Routing Issues

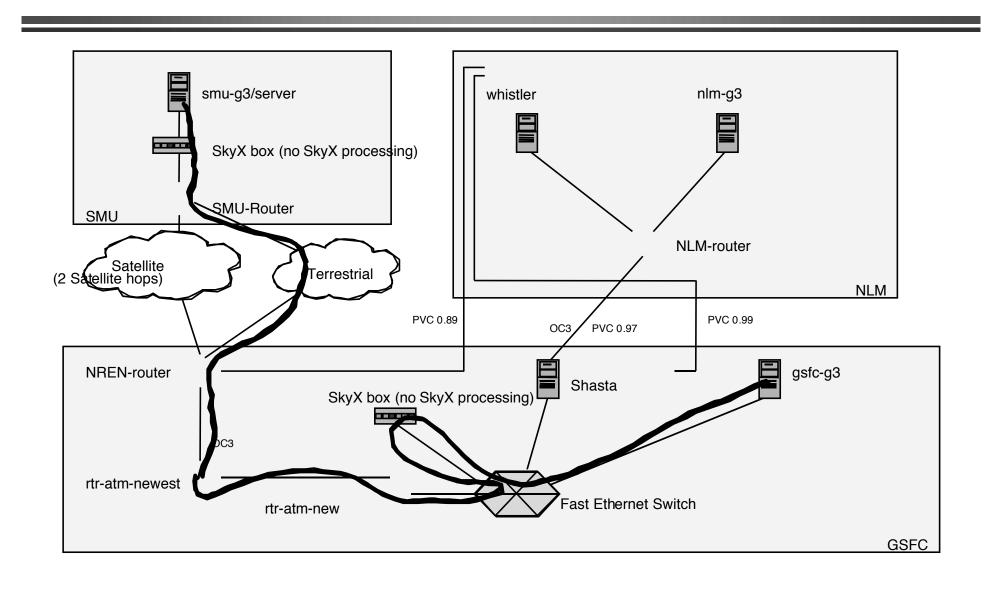
- SkyX Gateway has two Fast Ethernet (FE) interfaces
 - » Can be configured to use only one as a one-armed gateway
- SkyX Gateway at SMU placed between router connected via FE to satellite modem and SMU's VH LAN
- SkyX Gateway on Canadian/U.S. side was placed at GSFC
 - » Router in Canada connected to satellite modem connected to ATM network on path to NLM, thus FE connection did not exist at this connection point
 - » Two test systems at GSFC, an ATM-attached host at NLM, and a FEattached host at NLM were to be included in the SkyX testing
 - Static routes used to force path through SkyX Gateway for these hosts
 - SkyX Gateway was set up as one-armed gateway to avoid placing it between the router and various semi-production LAN's hosting the systems used in the SkyX testing
 - Tests verified that the SkyX Gateway running in one-armed mode could more than handle the I/O rates needed for this demo

SkyX Gateway Tuning Issues


- Easy to configure if delay and rate values are known
- Problems caused by misunderstanding of configuration settings affecting the bandwidth
- Assistance from Mentat in use of undocumented command to limit the bandwidth on the SkyX Gateway
 - » Helped determine the effective bandwidth to be 16-17 Mbps
 - Helped discover that, when a second PVC was added, the 45 Mbps PVC had been converted into two 20 Mbps PVCs


GSFC - Benchmark Test Script


- Written to check and save information on the characteristics of the link prior to each Visible Human Viewer test run
- Test Script Checks
 - » Roundtrip time (RTT) (using ping with small and large packet sizes)
 - » Router hops (traceroute with small and large packets in both directions)
 - » Transfer rates (ftp and nttcp of 7MB of data (size of largest image))


Path#	Path	Via	SkyX Proc	RTT (ms) 65B/1500B	-	ftp (Mbps) 15KB/7MB	nttcp (Mbps) 7MB
1	SMU-GSFC	Intelsat	Yes	1124/1127	14/14	/15.2	11.9
2	SMU-NLM	Intelsat	Yes	1127/1130	16/16	10.9/15.2	11.9
3	SMU-NLM	Intelsat	No	1127/1130	16/16	.026/.224	0.225
4	SMU-GSFC	TransPAC	No	191/224	16/14	/.817	0.732

where Intelsat is the satellite path and TransPAC is the terrestrial path

GSFC - Troubleshooting

- Complicated by differences in Time-Zones/International Date Line, languages, holidays, additional work loads, number of networks/groups/organizations involved, and mixture of technologies.
- Use of traceroutes helped determine when a loopback had been left in place, as the last router before the loop would repeat in the traceroute

GSFC - Troubleshooting (continued)

- Use of small and large packet ping and traceroute, and archiving the results, help isolate when and where a burst rate configuration problem was introduced that affected the transmission of large (around 1300 byte or larger) packets
 - » Initially small and large packet pings and traceroutes had worked in both directions
 - Link problem was noticed when only small packets worked in both directions
 - Large pings didn't work and large packet traceroutes completed in one direction and only made it part way in the other direction
 - For traceroute the large packet is not echoed, a small host unreachable packet is returned instead
 - Further narrowed down the problem by setting up loopbacks on the PVC on different switches and then checking the ping using large packets

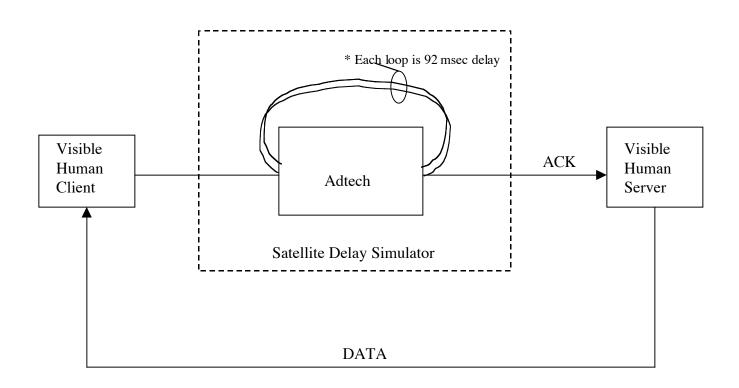
Personal File System (PFS)

Rational for using PFS

- » Special demo in Japan retrieved slice images via Network File System (NFS) had poor performance
 - NFS uses its own windowing mechanism and therefore is not aided by SkyX processing
 - Not able to change NFS parameters under MacOS X to improve performance
- » PFS has a cache storage on the client, and dynamically adapts for a variety of network speeds and bandwidths

Personal File System (continued)

NFS vs PFS Test results


7471284 byte downloads:

	kbps	seconds		
	min/avg/max	min/avg/max		
NFS Terrestrial	158/ 469/ 592	101/137/379		
NFS Satellites	144/ 214/ 292	205/238/416		
PFS Terrestrial	787/ 885/ 933	64/ 68/ 76		
PFS Satellites	1928/5369/8414	7/ 12/ 31		

Note: Terrestrial goes through a shared T1 link

Appendix

GSFC Satellite Delay Simulator

^{*} need 12 passes (11 loops) to simulate the delay in a two hop satellite connection (1.1 second delay)